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Retrosplenial cortex (RSC) is involved in visuospatial integration
and spatial learning, and RSC neurons exhibit discrete, place cell-like
sequential activity that resembles the population code of space in
hippocampus. To investigate the origins and population dynamics of
this activity, we combined longitudinal cellular calcium imaging of
dysgranular RSC neurons in mice with excitotoxic hippocampal lesions.
We tracked the emergence and stability of RSC spatial activity over
consecutive imaging sessions. Overall, spatial activity in RSC was
experience-dependent, emerging gradually over time, but, as seen
in the hippocampus, the spatial code changed dynamically across days.
Bilateral but not unilateral hippocampal lesions impeded the develop-
ment of spatial activity in RSC. Thus, the emergence of spatial activity in
RSC, a major recipient of hippocampal information, depends critically
on an intact hippocampus; the indirect connections between the
dysgranular RSC and the hippocampus further indicate that hippo-
campus may exert such influences polysynaptically within neocortex.

retrosplenial cortex | hippocampus | spatial sequence coding |
spatial learning | hippocampal indexing theory

The retrosplenial cortex (RSC) is a midline association region
that integrates thalamic, (para)hippocampal, and neocortical

information (1–5). Similar to the hippocampus (6), RSC is also
essential for spatial learning and memory (7–9). Consistent with
its proposed role in translating between world-centered and
body-centered views (10), RSC neurons carry various navigation-
related signals such as head direction, positional, and conjunctive
allocentric and egocentric information (11–17). RSC neurons
also show spatial activity resembling the activity of hippocampal
CA1 place cells (15). The sources of spatial signals in RSC are
unknown; however, hippocampus is an obvious possibility, and
hippocampal lesions or inactivation impair immediate early gene
expression in RSC (18, 19). On the other hand, both rodent and
human studies have suggested the opposite direction of information
flow, that RSC may send sensory and contextual information to the
hippocampus (20, 21), possibly through RSC projections to the
medial entorhinal cortex (22). Here we studied the emergence of
spatial activity in RSC upon repeated exploration of the same en-
vironment and tested the impact of the hippocampus on this activity.

Results
We investigated RSC neuronal activity in mice in a head-fixed,
treadmill assay (15, 23) (Fig. 1A). Fifteen adult transgenic mice
specifically expressing calcium indicator GCaMP6 in excitatory
neurons (24, 25) were divided into three experimental groups:
control, unilateral hippocampal lesion, and bilateral hippocam-
pal lesions (n = 5 in each group; NMDA lesion) (Fig. 1B). Mice
in the lesion groups sustained extensive neuron/tissue loss in the
dorsal hippocampal formation (Fig. 1C and SI Appendix, Fig. S1).
Movement trajectories were similar across groups (average speed
between 30- and 120-cm position: control, 15.4 ± 1.7; unilesion,
17.7 ± 1.8; bilesion, 18.9 ± 3.5 cm/s; all mean ± SEM, n = 5 in each
group; P = 0.61, one-way ANOVA) (Fig. 1D). We measured
cellular activity in the superficial layers (100 μm to 200 μm deep)

of dysgranular RSC using two-photon calcium imaging (26) (SI
Appendix, Fig. S2). We inferred activity from raw calcium fluo-
rescence signals using deconvolution (SI Appendix, Fig. S2) (27).
We studied the degree to which RSC neurons encode the animal’s
position on the treadmill. Consistent with our previous work (15),
a substantial fraction of RSC neurons showed repeated activation
at specific positions on the treadmill (Fig. 1E and SI Appendix, Fig.
S1D), similar to the activity of hippocampal place cells.
Hippocampal projections to RSC are mostly ipsilateral (2); we

therefore tested whether a unilateral hippocampal lesion dis-
rupts “place” cell activity in ipsilateral RSC. We compared ac-
tivity in the lesioned and intact hemispheres measured from the
same animals. Unilateral hippocampal lesion had no discernible
impact on RSC spatial activity (Fig. 2). RSC neuronal ensembles
showed sequential activation that was locked to position during
movement in both the intact and lesioned hemispheres (Fig. 2 A
and B). To quantify the encoding of spatial information by RSC
neuronal population, we built a Bayesian decoding model (SI
Appendix, Methods and Fig. S3A) to predict the animal’s position
from all imaged neurons using separate sets of trials for training
and testing (Fig. 2 A and B) (28). We observed no significant
difference in the place cell fraction (P = 0.30, paired t test) or the
position decoding error (P = 0.98, paired t test) between the
lesioned and intact hemispheres (Fig. 2C).

Significance

Retrosplenial cortex (RSC) is a major relay of hippocampal
formation output to other neocortical areas and is critical for
spatial and some other forms of learning. We show here that
the sparse, orthogonal, “place cell” sequence activity in RSC
develops gradually over several days and is severely
attenuated by hippocampal damage. These data support the
theory that hippocampus endows RSC (and possibly other
cortical areas) with an index-like, continuous representation
of the context in which events occur, that could support co-
ordinated retrieval of recent memory.
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While unilateral hippocampal lesions did not disrupt ipsilat-
eral RSC spatial activity, RSC could also receive spatial in-
formation from the intact, contralateral hemisphere (2). We
compared RSC place cell activity between intact animals and
animals with bilateral hippocampal lesions. Indeed, bilateral
hippocampal lesions significantly impaired place cell activity in
RSC (Fig. 3). RSC spatial sequence activity was severely dis-
rupted by bilateral hippocampal lesions (Fig. 3 A and B). The
fraction of RSC neurons showing stable place fields dropped
dramatically in animals with bilateral lesions (place cell fraction:
control, 0.50 ± 0.02; bilesion, 0.29 ± 0.04; mean ± SEM, n = 5
each group; P = 0.0005, one-tailed t test) (Fig. 3C). An alter-
native, spatial information-based criterion of place cell selection
yielded similar results (SI Appendix, Fig. S3 B–G). Position es-
timates inferred from Bayesian decoding of population activity
(using all cells) were also severely disrupted in bilaterally le-
sioned animals (decoding error: control, 14.60 ± 1.98 cm; bile-
sion, 27.68 ± 2.20 cm; mean ± SEM; P = 0.0011, one-tailed t test)
(Fig. 3D). These effects were not explained by other variables
such as neuron or trial counts (SI Appendix, Fig. S3 H and I).
Notably, while the proportion of place cells was reduced in an-
imals with bilateral hippocampal lesions, the properties of
neurons with place cell activity were similar (place field width:
P = 0.28; spatial information: P = 0.21, two-tailed t test) (Fig.
3 E and F and SI Appendix, Figs. S3J and S4). The extent of
hippocampal lesions may explain the residual place cell ac-
tivity observed in bilaterally lesioned animals, since the mag-
nitude of the effect was proportional to the proportion of
hippocampal damage (SI Appendix, Fig. S3J). These results
indicate that the hippocampus is necessary for the expression
of place cell activity in RSC.
We next investigated how RSC place cell activity emerges over

repeated exploration of the same environment and what the role of
the hippocampus is in this process. We monitored the activity of
the same RSC neuronal population over a period of 2 wk to 3 wk
in daily imaging sessions (control, n = 4; bilesion, n = 4). Activity
from the same neuronal cell bodies could be imaged across days
(Fig. 4A and SI Appendix, Fig. S5 A and B). Place cell activity in-
creased gradually with experience in the control group but not in
mice with bilateral hippocampal lesions (place cell fraction change:
control, r = 0.96, P = 0.0006; bilesion, r = 0.61, P = 0.17) (Fig. 4D).

Similar to what is observed in the hippocampus (29), RSC pop-
ulation representations of position on the track changed dynami-
cally across days (Fig. 4B), and more adjacent days had more
highly correlated population activity as experience increased (Fig.
4 B and C). The control group showed more repeatable pop-
ulation representations across days than the bilateral lesion
group (population vector correlations: control, 0.19 ± 0.02;
bilesion, 0.09 ± 0.02, P = 0.02, two-tailed t test) (Fig. 4E and
SI Appendix, Fig. S5C). Position tuning curves (occupancy-
normalized neuronal responses as a function of position) of
individual neurons were also more correlated between days in
control mice than in bilateral lesion mice (P = 0.02, two-tailed
t test) (Fig. 4E). These effects were not explained by the
number of place cells included in the calculation (SI Appendix,
Fig. S5F). We did not observe a difference in spatial activity
correlations (population vector correlations or position tuning
correlations of individual neurons) between the two hemispheres
in mice with unilateral hippocampal lesion (SI Appendix, Fig. S5 D
and E). These results indicate that RSC population representation
of spatial context improves progressively over time and that the
hippocampus is necessary for the emergence of spatial sequence
coding in RSC.

Discussion
Our data indicate that the spatial context coding in RSC im-
proves with experience, and this process relies on instructive
signals from the hippocampus. This may reflect a direct impact
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of the hippocampus or an indirect effect through intermediate
regions after lesioning the hippocampus. Indeed, the specific
RSC subregion we studied, the dysgranular RSC, receives weak
direct hippocampal input (1, 3, 4). Our results demonstrate the
importance of the hippocampus in shaping neocortical activity.
The pronounced experience-dependent spatial activity observed
may reflect a general principle of the influences of hippocampal
outflow on the association neocortex in terms of spatiotemporal
contextual processing. Sequential activation of large groups of

neurons has been observed in several cortical regions, including
the posterior parietal and prefrontal cortices (30, 31). These
sequences reflect information processing along the spatial and/
or temporal dimensions, with concurrent sensory experience
and events superimposed. Being uniquely situated at the in-
termediate layer within the default mode network (DMN) (32),
RSC may be critical for episodic memory processes by mediating
functional interactions between the cortical and subcortical
DMN subsystems (33, 34). The RSC may play a critical role in
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the transfer of hippocampal place/memory sequence codes to
other regions of the neocortex, to associate information across
different cortical modalities (35–37) and to guide complex
behaviors (38).

Methods
All animal procedures were performed in compliance with protocols ap-
proved by the ethical research committee of the University of Lethbridge.
Fifteen adult male and female transgenic GCaMP6 mice [20 g to 25 g, 2 mo
to 4 mo old at the time of surgery, including 13 Thy1 GCaMP6s GP4.3 mice
and 2 Ai93 (TITL-GCaMP6f) jj CaMK2a-tTA jj Rasgrf2-2A-dCre mice] were
used in this study. Mice were divided into three experimental groups:
sham lesion (control, n = 5 Thy1 mice), unilateral hippocampal lesion (n =
3 Thy1 mice and n = 2 Ai93 mice), and bilateral hippocampal lesions (n = 5

Thy1 mice). Mice were habituated and trained to run on a linear treadmill
track with head fixed.

Full methods can be found in SI Appendix, Methods.
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